Product Yield Distribution and Characterization of Bio-Oil from West African Cordia Sawdust Pyrolysis

Joseph A. Oyebanji^a, Pious O. Okekunle^{b*} and Olumuyiwa A. Lasode^c
^aDepartment of Mechanical Engineering, College of Engineering, Bells University of
Technology, Ota, Nigeria, ^bDepartment of Mechanical Engineering, Faculty of Engineering
and Technology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
^cDepartment of Mechanical Engineering, Faculty of Engineering and Technology, University
of Ilorin, Ilorin, Nigeria

Abstract

The quest for energy generation in the most environmentally friendly way has necessitated the conversion of agricultural residues, believed to constitute nuisance to the environment, into useful bio-fuels. Pyrolysis of West African Cordia (Cordia millenii) sawdust was carried out in a purposely built tubular carbon steel reactor under N_2 atmosphere within the temperature range of 410 and 530 °C. Proximate and elemental analyses were also performed on the raw sample using iso-conversional methods. Product yields were collected at 30 °C interval. Bio-oil yield was characterized by using analytical Py-GC/MS technique. The Higher Heating Value (HHV) of the sample was found by using Parr bomb calorimeter while that of char yield was theoretically determined. The highest yield of pyro-oil was 63.4% at 500 oC, that of pyro-gas was 30% at 500 °C and that of char was 35% at 410 oC. The proportion of phenolic compounds identified was more than 75% with trans-2-octadecadecen-1-ol, cis-10-pentadecen-1-ol, 9-octadecenal, methyl-1-cyclohexenyl ketone showing dominance. The HHV of the raw sample and char yield were 18.07 and 18.95 MJ/kg, respectively.

Keywords: Biomass, analytical py-GC/MS, pyrolysis, bio-fuel, fixed bed reactor.

Email: pookekunle@lautech.edu.ng

Received: 2016/08/25 **Accepted**: 2017/01/10

DOI: https://dx.doi.org/10.4314/njtr.v13i2.4